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Abstract--This paper is concerned with the theoretical investigation of crystallization nuclei undergoing 
radially symmetric oscillations in supercooled liquids and supersaturated solutions exposed to a sound field. 
Periodic crystallization and melting processes occurring in the course of these oscillations are shown to result 
in higher amplitudes. This enhances the nonlinear interaction of sound with an oscillating nucleus which 
results in the phenomenon of rectified heat transfer, i.e. a slow (as against the sound cycle) process of heat 
pumping into a nucleus. Another peer, liar feature of the nonlinear interaction between the sound and the 
nuclei is evidenced by the fact that the location of nucleation sites in a standing sound wave depends on the 
dimensions of nuclei and the sound frcquency--a situation differing substantially from the case of solid 
particles without phase transformations. It is shown that phase transformations may markedly increase the 
absorption and dispersion of the speed of sound propagating in crystallizing liquids as compared with liquids 
containing solid particles without phase transformations. I t is also shown that an increase in the anaplitude of 

the oscillations of crystallization nuclei enhances their interaction with each other. 
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N O M  E N C L A T U R  E n, 

crystal lattice constant ;  
solution concentration ; P, 
sound speed in a liquid, (7/p/3)'a; Po, 
thermal wave speed, ( - i w D )  ~ i,; Pro, 

&, specific heat at constant  pressure; 
specific heat along the phase equilibrium 
CU r v e  ; P i t ,  

crystallization curve slope, (OT/OP),,; Q, 
slope of the curve of equilibrium 
solubility; 
quantity characterizing nonlinearity of r, 
the crystallization curve, (~2T/OP2),; R, 
slope of adiabatic curve, (aT/dP)s; S, 
thermal diffusivity; T, 
diffusion coefficient ; To, 
scattering ampli tudes;  T,,, 
mass flux through unit surface of nucleus ; 
Boltzmann's constant ; T'o", 
sound wavenumber, w/c I ; 
wavcnumber of thermal wave, w/c2 = AT0' 
( i . ~ / D ) '  a ; 
wavcnumber of diffusional wave, t, 
(iw/D,)' :2 ; u, 
intrinsic nuclear compressibility; U, 
module of complex compressibility .~"; v, t,, 
heat of melting; 
heat of dissolution ; AV,, 
mass of molecules of a solvent and solute, 
respectively; 
number of particles of a solvent and 
solute, respectively; 
Avogadro's number ;  

number  of nuclei of the same radius per 
unit volume of liquid ; 
pressure ; 
pressure in unperturbed liquid; 
pressure in a sound wave; 
modified Prandtl  number, 

[(4,1/3 ) + ~]/pD; 
sound pressure at which d,q/dt = 0; 
factor accounting for the relationship 
between external pressure and that inside 
a nucleus, dP/dP';  
space-dependent (radial) variable ; 
nucleus radius;  
entropy ; 
temperature ; 
temperature in unperturbed liquid; 
equilibrium temperature of pure liquid 
crystallization ; 
equilibrium temperature of crystalli- 
zation of a liquid with impuri ty;  
supercooling of pure liquid, 
To(Po) - To ; 
time; 
radial displacement ; 
velocity at the interh~ce; 
velocity and radial velocity component,  
respectively; 
volume change on dissolution. 

Greek symbols 
cq thermal coefficient of volumetric 

expansion ; 
/3, coefficient of isothermal compressibility ; 
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,5, 

F,, 

t], 
O, 

A, A (c~, 

A~ ~, 

11", 

P, 
(7, 
(.9, 

specific heat ratio; 
symbol which indicates that a small va- 
riation about a mean value of the quantity 
is considered (6p ,  6 R  etc.); 
volumetric concentration of solid phase, 
4 n n R a / 3  ; 

coefficient of volumetric viscosity ; 
coefficient of shear viscosity; 
phase of complex compressibility J{'; 
thermal conductivity; 
thermal wave length, (2D/oJ) t/2 ; 

kinetic coefficients determining non- 
equilibrium condition of crystallization of 
pure liquid and liquid with an impurity, 
respectively ; 
kinetic coefficient characterizing decom- 
position of supersaturated solution ; 
Lam6 cocfficient ; 
density; 
surface tension coefficient; 
circular frequency of sound. 

Subscripts 
O', 

R~ 

S, 

indicates that the values taken along the 
phase equilibrium curve; 
the value of the quantity taken at r = R ; 
the value of the quantity taken at S 
= const. 

Superscripts 
( ) o r ,  means averaging over the sound cycle 

(e.g. ( R )  = /~); 
�9 " quantity refers to a nucleus; 
, denotes a time derivative (/~ = d R / d t  etc.). 

I. INTRODUCTION 

INTEREST in the study of the dynamics of solid phase 
nuclei in a .sound field has been engendered by the 
problem of the effect of sound on the structure of 
substances crystallizing out of liquid phase I-I-5] and 
by the studies of sound propagation in a crystallizing 
liquid [5, 6]. Numerous experiments show that the 
exposure to sound of the process of crystallization 
promotes appreciable decomposition of the substance 
forming from a melt and the attainment of its uniform 
structure. Possible mechanisms for this effect have 
been suggested [1-5]. However, as yet no theory of this 
phenomenon has been advanced and the mechanism of 
sound interaction with a separate nucleus of a solid 
phase is as yet unknown I-3]. There is also a distinct 
lack of theoretical work on the mechanism of sound 
speed absorption and dispersion in a crystallizing 
liquid containing solid phase nuclei [5, 6]. The prob- 
lems mentioned above are the concern of this 
contribution. 

A characteristic feature of the behaviour of solid 
phase nuclei in a sound-exposed liquid, distinguishing 
them from ordinary solid particles, is the existence on 
their surface of periodically alternating processes of 

melting and crystallization. This causes an additional 
change in the nuclear volume as a consequence of mass 
transfer during phase transformations. As will be 
shown below, this eventually leads to an additional 
change in compressibility and to an increase of the 
amplitude of radially symmetric oscillations of nuclei, 
as well as of the sound energy dissipation near it. As a 
result, abnormal absorption and dispersion of sound 
speed might be expected. Higher sound absorption, 
causing the acceleration of acoustic flows, promotes 
the attainment of a uniform structure of substances 
crystallizing out of a liquid state in a sound field [5]. 
The growth of radially symmetric oscillations of nuclei 
due to mass transfer may also lead to an increase in the 
forces of interaction between the nuclei, e.g. the 
Bjerkness forces I7, 8]. This, in particular, may be a 
very important factor in the formation of the fine 
stucture of substances crystallizing from melts under 
the effect of sound. 

Physically, sound interaction with crystallizing nuc- 
lei can be explained as follows. For simplicity, let us 
assume that the nucleus is spherical with radius R. 
Suppose an harmonic sound wave Pmexp(-iwt + 
i k l r )  is incident on it. The temperature of the nuclear 
surface T R at each time instant during a quasi- 
equilibrium phase transitiori',is shown in Fig. 1 by 
points on the phase equilibrium CUlXe 1. The tempera- 
ture of the liquid near the nucleus surface follows the 
sound pressure along the adiabatic curve 2. Periodi- 
cally the liquid adjacent to the nucleus surface is 
locally supercooled or superheated by the amount 
AT o = T o - T s, which leads to the alternating 
processes of crystallization and melting. The resulting 
mass transfer causes an additional change in the 
nuclear volume. The liquid starts to crystallize on a rise 
of pressure--an additional change in the volume is 
positive, i.e. it competes with a decrease in the nuclear 
volume as a result of mechanical compression. One can 
readily conceive a situation when a change in the 
nuclear volume due to mass transfer becomes larger 
than that produced by mechanical compression only. 
Then an effective negative compression of the nucleus 

P 

Po + P. " . . . . . . . . . . . .  P I -  

/ 
Po 

Po - Pr~ - ~ "  

1 I 
T s (Po+Pm) To (Po.+ Pro) T 

FIG. 1. Schematic representation of the phase state of a 
crystallization nucleus in a sound field. 
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will appear to have occurred. Since mass transfer 
occurs on the surface of the nucleus, while compression 
takes place throughout its volume, the case described 
may arise only at sufficiently small radii when the 
surface effect is appreciable. Under these conditions a 
substantial increase in the amplitude of nuclear oscil- 
lations in a sound field is to be expected. It is evident 
that the heat transfer processes near the nuclear 
surface should also be considered, since the crystalli- 
zation and melting phenomena are very sensitive to the 
conditions of phase transition heat removal from the 
interface. Thus, the oscillations of crystallization nuclei 
in a sound field may be considered by simultaneously 
solving the hydrodynamic equations and the equations 
that describe the kinetics of phase transitions. The 
system of equations obtained is solved below using 
perturbation theory. 

2. BASIC A S S U M P T I O N S  A N D  I N I T I A L  S Y S T E M  
O F  E Q U A T I O N S  

If "the size requirement for the nucleus compared 
~vith the wavelength in a liquid is met, k lR  << 1, then 
the temperature and pressure distribution far from the 
nucleus can be written as 

P( 72, t) = Po + Pm e-":", (1) 
T(:r_,t) = T O + dsPm e-i,,t. 

Yhese boundary conditions represent perturbations, in 
:esponse to which the nucleus undergoes radially 
~ymmetric oscillations about some radius/~ which, in 
:urn, can vary with time as 

q(t) = R(t) + fiR(t), R(t) = (R( t ) )  

CO /'t + 2 n,'o 

= ~n Jtl R(t)dt. (2) 

Henceforth, only forced oscillations of frequency to 
viii be considered, then 6R(t) = R m exp(-io~t). In 
toing so, the following relationships will be assumed 

I6RI<<& I,<I<<I6RI=o~IR~ I. (3) 
[he quantity 5R is assumed to be linear in amplitude 
9 m and the quantity/~ to be quadratic in Pro- We may 
tssume that similar relationships hold for other physi- 
:al quantities: pressure, temperature and density. 
[hese assumptions allow one to separate the equations 
or linear oscillating values of the quantities from those 
or averaged values. 

A spherical system ofcoordinates locating the origin 
tt the nuclear center is used. For mean values of 
luantities in the quadratic approximation of the 
)erturbation theory we may write the following hy- 
irodynamic equations: 

p<Vv> + V<fpSv) = 0, (4) 

= , 1 + ( V ( V v )  

2v<6v'> + v<6f(6p/p)), (5) 

V( tcVT)  = Vq, q = pCe(bv(bT - dsSP)) 

+ ( S v [ S P -  (~,l  + ( ) V 6 v ] > .  (6) 

Linear perturbations in tile liquid are described by the 
linearized hydrodynamic equations: 

6fi + pVbv = 0, (7) 

(3) p(Si- + VfP = - ,I{V[VtSv]} + '1 + (V(V(Sv), 

(8) 

tYi" -- ds6t  ~ = DV 2 fiT, D = ~:/pC e. (9) 

The spherical solid nucleus is assumed to be iso- 
tropic. Taking into account the condition k I R << 1, the 
pressure inside the nucleus may be considered the 
same everywhere, 

P'(r, t) = P'(R, t) = P'R(t), r <~ R. (10) 

The remaining equations for the isotropic nucleus 
coincide with equations (4), (6), (7) and (9) provided 
thatt  I = ( =  0. 

For the above equations to be solved, it is necessary 
to formulate the boundary conditions. The conditions 
far from the nucleus are expressed by equations (1). At 
the center of the nucleus the absence of any singularity 
is assumed: T'(0, t) < ~ ,  VT'[,= o = 0. In a general 
case, the joining of solutions at the interface of the 
nucleus requires five boundary conditions [the press- 
ure and temperature in the nucleus and liquid as well 
as the radius R(t) are unknown quantities]. 

The first three boundary conditions can be obtained 
from the general mass, momentum and energy con- 
servation laws I-7, 9, 10]. The mass and momentum 
conservation equations yield 

p(/~ - U) = p'(/~ - V') = J, (I1) 

2a P'g = P n + --~ + J z Ap 
p'p 

(12) 

The energy conservation equation can be written in 
the linear and quadratic approximations as 

L6J = h:'(V6T')R -- K(VfT)R, (13) 

( 6 J  {(C' v - Ce)ST n - V'P Ap bPR JL 

1 2a tSR Ap 

p ' R  R p'p 

5U 
• (4'l--~-) - (~'l  + ( )  (V 5v)R} > 

= Qz'(VT')R) - Qc(VT)R). (14) 
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The remaining boundary conditions follow from the 
relations established experimentally. The fourth boun- 
dary condition accounts for the continuity of tempera- 
ture on the nucleus surface [12, 13] 

T' (R,  t) = T(R ,  t) = T R. (15) 

The fifth boundary condition is the equation of 
crystallization kinetics [12, 13] 

J = p 'A (T, ,  - TR)  , A = aLp/(qTo).  (16) 

This equati6n holds for a large number of substances 
(metals, cryogenic liquids, a large class of inorganic 
liquids) that satisfy the condition L / k a T N  A < 2 [5, 12, 
13]. 

The quantity T,, = To(P) is the temperature cor- 
responding to pressure P along the phase equilibrium 
curve ; it can be found, for example, from the require- 
ment for the equality of chemical potentials of liquid 
and nucleus [14]. In the quadratic approximation of 
the perturbation theory the quantity T,~can be written 
as 

E 

+ AT o + d ~ ( P ~ -  Po) T~ To 
k 

p d~ ~ , 

" , . ? ,  + ,'o)-'. (17) 
Ap J 

Here it is necessary to note the difference in methods 
of averaging the boundary conditions and hydrody- 
namic equations. The averaging of boundary con- 
ditions is carried out on the moving surface of the 
nucleus which oscillates with the sound frequency, 
while the hydrodynamic equations are averaged at a 
fixed point in space. For these averaging operations to 
be matched, the function O(R) -L- r + fiR), pre- 
scribed at the nucleus surface, is expanded as a Taylor 
series in the neighbourhood of the point /( and 
averaged in the quadratic approximation [9] 

((JR) = ( O ~ )  + ( (bRV)bt~)~.  (18) 

Note that within the quadratic approximation the 
value of (r coincides with the corresponding value 
of ( ~ )  at the fixed point of space. Equation (18) 
completes the formulation of the initial system of 
equations. 

3. FORCED LINEAR OSCILLITIONS OF NUCLEI 

The forced radially symmetric vibrations or oscil- 
lations of nucleation centers in a pure liquid were first 
considered in detail in [14]. We shall limit our 
discussion to some basic concepts which will be 
required later. The scattering of a plane sound wave on 
a spherical nucleus in the monopolic approximation is 
considered, so that pressure and temperature distri- 
butions in a liquid can be written as 

fsin k~r eik ~" 
,sP(,) = ~eo ~ - ~ - , r  +A --;-- 

cik2 r ) 

+ . f 2 ~ - . ~ . ,  t~Po=Prn ei'", (19) 

fiT(r) = dsbP o ~sin k i t  elklr 

�9 ( k ,r  + A  r 

- ~ p c ~ d s ( 1  - Pr) " . (20) 

The liquid velocity field can be determined with the 
aid of equations (7) and (8) subject to the conditions 
(19) and (20). The temperature distribution inside the 
nucleus can be found from the solution of the heat 
conduction equation (9) inside the nucleus. Then 

icoR 
( V f T ' ) R  (fiT' a - d'sbe'a) q~(k'R) (21) 

3D" 

where rp(z) = 3(z cth z - l)/z 2, k' = (-io2/D') '  2. The 
velocity of nuclear particles on the interface is de- 
termined by integrating the continuity equation (7) 
taking into account the state equation 6p']p' = 

fl'bP' -- ~'5T" 

io2R - 

5 U' = - - z -  [ I~ S P' ,  - ~,' ~oS T'~], 
(22) . 5 -  

17 = ~'- + ~' ,p,r~. 
t 

The nuclear radial fluctuations can be written then 
as 

5R K 
R - 3Q 6Po, 

K po22R 2 
Q = I  

3 1 - i k i R  

G 

(23) 

coc' ,),to  ' 
K=&--E  - G C ;  ) " 

G = 7 +  �9 t d , ,  (24) 

flo ~'(d~ ,Is) q ,o 
=Y"  c p - O '  

p C  v 1 - k z R  
0 = 3 - -  

p'C'e (k2R) 2 ' (25) 

C~, R(q~ - @) 
= (1 - icor)-1, r - (26) 

L 3A 

As is shown in ref. [14], K is the intrinsic compress- 
ibility of the nucleus, K = - (1/V)(dV/dP') ,  while the 
quantity ~" = K / Q  is the compressibility of the 
nucleus considered as an element of a two-phase 
medium or .)t" = - ( I / V ) ( d V / d P ) .  The parameter 
characterizes the non-equilibrium nature of phase 
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transformation. For a quasi-equilibrium phase trans- 
formation c." = 1, which, at small field frequencies, is 
also the case for liquids having a high enough kinetic 
coefficient A. Conversely, the assumption that A = 0 
yields the case of solid particles without phase 
transformations. 

Figures 2 and 3 show the relation ,~(R) = e - '~  
for hydrogen and water. It can be seen that at small 
nuclear radii the absolute value ofcompressibility I S  l 
is much greater than the value ofl,~] which is observed 
at large R and which is asymptotical to the adiabatic 
compressibility F/7'- This increase in is associated 
with an additional change in the nuclear volume due to 
phase transformations on its surface [9, 14]. The 
occurrence of a maximum and the subsequent decrease 
in the function I~(n)l are attributed to the damping 
effect of surface tension forces on the sound pressure 
[14]. 

The analysis of the compression phase O(R), pre- 
~nted in Figs. 2 and 3, shows the nuclear compress- 
ibility as having a negative sign. For substances with 
a positively sloped phase equilibrium cu~'e (d~ > 0) 
this property is associated with a change in the nuclear 
volume due to crystallization-induced mass transfer 
competing with the change caused by mechanical 
compression, At large R, when the surface effect is 
small, the nuclear compressibility is positive, but at 
small R, this effect becomes significant and results in a 

negative compressibility due to the prevailing influence 

I0-~ I ( 

- IO-? f 
.,~ 10-8 

I0 9 

Io-IO I .  

~o TM I ! I I 

-"21 (hi 
'/7S - ,, 1 I I 

10-6 I0-5 10-4 10-3 [0-2 
R~ cm 

FIG. 2. Compressibility .YI~(R)in the case of a crystallization 
nucleus in water at different sound frequencies: I, 410 kHz; 2, 
26 kHz; 3, 0.4 kHz. (a) the function [,XqR)[. (b) the function 
O(R). Solid curves correspond to the liquid without an 
impurity; dashed curves relate to the liquid with an impurity 

having ~5o = 1%. 

of mass transfer. In particular, the minimum in the 
curve I.:r for hydrogen is caused by competing 
mechanical compression and mass transfer. In the case 
of water, for which d,, < 0, this minimum is absent 
since the effect of mass transfer and mechanical 
compression on a change in the nuclear volume is of 
the same sign. 

4. Tile EFFECT OF RECTIFIED IIEAT TRANSFER 
IN OSCILLATIONS OF NUCLEI 

In order to determine the behaviour of the mean 

radius R(t), it is necessary to consider the averaged 
hydrodynamic equations (4)-(6) subject to boundary 
conditions (11), (12) and (14)-(16). 

Integration of the Navier-Stokes equation (5) tak- 
ing account of the continuity equation (4) and equa- 
tions (7), (8) and (18) yields the following result: 

(PR) = Po + (6R(VfP)R) 

-p(SU')-2pf~(6t,2)d---/ .  (27) 

On integrating the continuity equation (4) over the 
nuclear volume and applying equation (18), we obtain 

6 J  (6__p' " 

The integration of the heat conduction equation (6) 
from r to ~. and from/~ to ~ gives 

T 

U lOl8 

lO-9 

io-IO 

7r/2 

10-6 __ 

i0 -7 

(o) 

I I ! I I 

[b) 

j0-6 i0-5 IO-4 IO-3 10-2 
R~ cm 

Flo. 3. Compressibility for crystallization nuclei in hydrogen 
at different sound frequencies. Details as Fig. 2. 
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K 
(K(VT)R> = -- ~ [ TR -- To -- (fiR(VfiT)g>] 

+ ~- qdr + qR, (29) 

where q is given by equation (6). The expression 
<K'(VT')R> is found by integrating equation (6) with 
the condition VT'[ ,=  o = 0, 

Qc'(VT')R> = -- C'e<fid(fiT R -- d'sfiP~) > 

+ (fiU'fiP'R> -- 2K'< fiR (Vf iT')g> (30) ~- 

With the help of the expressions obtained we can 
determine the mean rate of crystallization nucleus 
growth in a supercooled liquid 

I~= A(R)[AT o - d~Ap2a A T ]  
R 

A(R) = p,---~- 1 + 
(31) 

where the quanti ty AT is 

5 

A T =  ~ AT t, AT l = - d ~  ~ 
I = 1  

F 1 2 P - PR)>] ,  • L2 <fipR> - ~ p  (fiP~(P'g 

x 7 v (fiJ~> - (fiR(VfiP).> , 

AT 3 = <fiR(VfiT)g>, 

AT 4 = _~I f ~  (ft 'fiP> dr, 

AT 5 = ~ (fiR(fiT - dsfP)> dr. 

All of the terms constituting the sum AT have a clear 
physical meaning. The first term is associated x~ith the 
nonlinearity in the phase equilibrium curve. For most 
substances t./ff) < 0, therefore, this term leads to a 
decrease in R. The term AT 3 is due to the surface effect 
described for the first time by Hsieh and Plesset [7, 15] 
with reference to the dynamics of gas bubbles in a 
sound field. The term AT4 accounts for the absorption 
of sound energy as a consequence of the work done by 
the field on the liquid flows set in motion by this field. 
The quanti ty AT 5 is the mean convective heat flux 
from the liquid to the nucleus caused by the motion of 
liquid particles under  the action of sound. As a whole, 
the quantity AT depends on the work of the field and 
therefore AT = B(R, to)P~, where B > 0. The 
appearance of a temperature difference is associated 
with a peculiar phenomenon of heat pumping into the 
nucleus. Similar to the case ofvapour  bubbles [7], this 

effect has been termed the effect of rectified heat 
transfer [9]. 

Next the sound pressure amplitude at which/~ = 0 
will be determined. This case occurs at a certain 
threshold pressure Pk determined from 

2a t/2 
P k = [ ( A T o - d , + - - ~ ) / B ( R , ~ o ,  ] . (33) 

The function B(R, w) can be found by the following 
approximate equat ion:  

B(R, t o ) = - - ~ [ 1 - 2  P--P--2a ] ' Y f l c ~  R 

+ s--~-'~ "~ 1 + - - + 2 A P F ~  cos0 
/ ' r  P 

. ]} + a - s i n 0  IooCo+ 2ApR(1, +dopC~F;) , (34) 
Zr P z r  

where 2 r = (2D/(o) I a, F]  and F~ are respectively the 
real and imaginary parts of the integral 

f o  e - = ( 1  + x)-adx' Fa 

= (1 - i)R/2 r. 

Figure 4 shows the cu~'e Pk(R) at different field 
frequencies for hydrogen. This figure also contains a 
schematic representation of the function Pk(R). A 
straight line corresponding to the magnitude of the 
sound pressure Pm, will intersect the curve Pk(R) at two 
points:  at R = Rm~,and R = R . . . .  

Since a nucleus grows only at P= < Pk, it can be seen 
that the point Rmi . is unstable, while the point Rm,~ is 

10 7 

E u 

I0 6 

7, 
n 

iO 5 

H i 
Rmin 

! I 
iO-4 iO-3 10-2 

R,  cm 

Flc~ 4. The function Pk(R) for a supercooled hydrogen (ATo 
= 10 -a K) taking account of an impurity with concentration 
Co = 17o at different frequencies of sound: l, 0.4kHz; 2, 
26 kHz; 3, 410 kHz. Solid curves, pure liquid; dashed curves, 

liquid with impurity. 
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stable with respect to small departures of the radius R 
from these values. Thus the sound field narrows the 
wide size distribution of nuclei in the vicinity of the 
point R ..... This provides a principal possibility for the 
formation of a uniform and fine structure of the solid 
substance crystallizing in a sound field. It should be 
noted, however, that substantial amplitudes of the 
sound pressure are required for the above phenomena 
to be observed at large supercooling. The analysis 
shows that the effect ofrectified heat transfer is greatest 
in cryogenic liquids. In such liquids the effect can be 
recorded by relatively simple methods. In the case of i 
water this effect is less pronounced, due mainly to an 
increase in the slope of the phase equilibrium curve 
[decrease of Idoll. For metals, this effect is even weaker 
than for hydrogen and water. 

5. T I l E  E F F E C T  O F  I M P U R I T I E S  O N  T I l E  D Y N A M I C S  

D F  N U C L E I  I N  A S O U N D  F I E L D  

In practice a crystallizing liquid always contains 
impurities of other substances that constitute the 
solution. The effect of an impurity on nuclei dynamics 
is qualitatively described below, assuming that the 
impurities do not interact chemically with the basic 
liquid (solvent) and that impurity concentration is 
small. It is known [16] that when an impurity dissolves 
in a solid phase worse than in a liquid one, its presence 

�9 in the liquid dccreases the equilibrium crystallization 
temperature. Then, as a nucleus grows, the impurity, 
displaced from the crystallization front, forms a more 
concentrated solution near the surface than that of the 
liquid far from the nucleus. The hi~aer concentration 
causes a further decrease in the equilibrium crystalli- 
zation temperature which partially makes up for the 
supercooling under the action of which the nucleus 
~ows.  As a result, the rate ofits growth decreases. The 
opposite effect is observed in mel t ing--a  decrease in 
the concentration of impurity gives rise to an increase 
of the equilibrium crystallization temperatures. This 
too leads to a lower rate of radius change. Con- 
sequently, the impurity exerts a damping effect on 
crystallization nuclei oscillations in a sound field. 
Clearly, this results in a smaller compressibility of the 
nucleus, as well as in a smaller effect of the rectified heat 
transfer. 

For describing the effect of impurity on the dy- 
namics of nuclei, it is necessary to consider an ad- 
ditional equation, the diffusion equation which go- 
verns the distribution of the impurity. It can be shown 
that the remaining equations presented in Section 1 
will retain their forms in the weak impurity con- 
centration approximation. The diffusion equation can 
be written in the linear and quadratic approximations 
a s  

6d = DeV2~c, V(pcv)  = V(pDcVc) (35) 

Where D, is the diffusion coefficient, c = n2m2/(ndnx + 
n2m2) and n~ and nz are the number of particles of the 
Soh'ent and solute, respectively. On the assumption 

that diffusion in a solid phase is neglected, (VC')R = 0, 
the boundary condition for equation (35) may be 
written as 

Jc g = - pD,(Vc)n. (36) 

The effect of impurity on the equilibrium crystalli- 
zation temperature can be related to the condition of 
equality for the chemical potentials of phases ex- 
pressed with account taken of the impurity [16] 

k~T p'p 
T ~ =  T ,  d,CR. (37) 

m 2 Ap 

The equation for the crystallization kinetics of liquid 
containing an impurity will change its form compared 
with that of equation (16). The quantity T,, will be 
replaced by T~ ~ determined from equation (37). 

The solution of the problem can be obtained as 
follows. The expression for (VtSc)n following from the 
solution of equation (35) has the form 

1 - ikcR 
- -  6c R. (38) (V6c)a = -- R 

Substitution of expression (38) into the boundary 
condition (36) yields 

RC R 6 J  

6 c a -  pD c 1 - ikcR" (39) 

Then, the oscillations of the equilibrium crystallization 
temperature of the liquid with an impurity, tST~ ~, can 
be expressed in terms of the oscillations of mass flux 6J. 
By substituting the resulting value of 6T~ ~ into the 
equation for the crystallization kinetics ofan impurity- 
containing liquid, we find that it takes on the form 
formally coinciding with equation (16) which describes 
crystallization of pure liquid but with a different 
kinetic coefficient, i.e. A (~ determined at Co = c(t, ~ )  
by the following equation: 

A(O = A {  1 + P ' A C o R k B T  2 1 .} - ' .  (40~ 
p Dc m2L 1 -- ik,.R 

By using the relationship for the diffusion coefficient 
in the form D~ = kBT/6mla [17] and using equation 
(16) for A, the quantity A (~ can be written as 

9P'?oR 1 i - l ,  
A < ~  1 + 2 p  a l - i k , , R  

DI 1 
t?o = C o - - .  (41) 

Ill 2 

In Figs. 2 and 3, the dashed lines show the effect of an 
impurity on oscillations of the crystallization nuclei in 
water and hydrogen. We can see that the impurity 
decreases the value of ]~F I and shifts the region in 
which Re ~ < 0. 

Similar to the case of linear oscillations ofnuclei, we 
can consider theeffect of impurity on the mean rate of 
nuclei growth,/~. It can be shown that the effect of an 
impurity on the mean rate/~ is given by the replace- 
ment of quantities ATo and A in the function A(R) of 
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equation (31) by the quantities which depend on the 
impurity concentration 

k B T  , p 'p  
AT o -~ AT~ ) = AT o - -  - - t G - - C o ,  

m, Ap (42) 

A.-o A~) = A l + 2 p  a _J 

The expression for B(R,  to) formally remains un- 
changed, the impurity being accounted for in the 
expressions for [.xJ and 0. 

In Fig. 4, the dashed curves show the influence of 
impurity on the behaviour of the function Pk(R). The 
impurity is shown to lower the effect of rectified heat 
transfer. 

Probably the most pronounced influence, is exerted 
by an impurity on the behaviour of the rate g. Thus, for 
aluminum the value of A in the presence ofan impurity 
with the concentration Co -- 1% decreases by about a 
factor of 6. Since R(t)  ~ (At) t/2, it is seen that the 
impurity will decrease the nuclear radius by 2.5 times 
relative to the case with no impurity. This effect of 
impurity on the structure of substances crystallizing 
out ofmelt has been noted earlier in a number of works 
[2-4]. 

6. DYNAMICS OF NUCLEI UNDER Til l  
ACTION OF SOUND IN CRYSTALLIZING 

SOLUTIONS 

For a supersaturated solution, the phase transfor- 
mations are periodically alternating processes of pure 
solid substance dissolution and solution decompo- 
sition into a liquid (solvent) and a solid substance, i.e. 
the essential difference from the cases considered above 
is in the 'driving force' of phase transformation: 
oversaturation instead of supercooling of the solution. 

The basic hydrodynamic equations given in the 
previous sections are valid for the present case also. 
The difference is observed in the boundary condition 
for the diffusion equation which acquires the form 

J c  R = J - -  p D , ( V c ) R .  (43) 

The quantity L is replaced by the heat of dissolution L o 
and for an oversaturated solution the equation of 
crystallization kinetics (16) is replaced by the relation 
c R = co(P, T),  where the subscript a means that the 
quantity is taken along the curve of solution 
saturation. 

The problem of nuclear oscillations in solutions may 
be solved as follows. The equilibrium concentration 
oscillations on the nuclear surface are 

6c R dc~' 6 T  0% 6p 
= O T  R+~--f i"  R 

- m2c~ L , ( f T  R -  #~)6PR). (44) 
k a T  2 

By substituting equation (38) for the concentration 
gradient, taking account of equation (44), into the 
boundary condition (43), we obtain the equation for 
the crystallization kinetics which coincides in form 

with equation (16) with the sole difference that the 
quantity d,  is replaced by d2 ~ and A by A~ ~. These 
quantities are determined from 

#~) _ A V ,  T 

Lc ' 

= p D~ m z %  1 - ikcR (45) 

All the remaining equations, which are valid for the 
dynamics of nuclei in a supercooled liquid having no 
impurities, are also applicable for the analysis of nuclei 
dynamics in a supersaturated solution provided tile 
quantities d,, and A are replaced by d~ ~ and A~ ~, 
respectively. 

Figure 5 shows the function .~r(R) for a nucleus of 
potassium bromide in a supersaturated aqueous sol- 
ution. It is seen that the basic trends typical of the 
dynamics of nuclei in a supercooled liquid are also 
observed for the dynamics ofnuclei in a supersaturated 
solution. The difference in the behaviour of the com- 
pressibility function is evidenced by a marked shift of 
the function ,Y{'(R)into the region of small dimensions. 
This is attributed to a substantial difference between 
thermal diffusivity D and diffusion coefficient D~ that 
determine the scale lengths for heat and mass transfer 
(the length of a 'thermal" or "diffusional" wave). 
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T~  10-8 

�9 "o iO-9 

u 

-. i0- I0 

i0 - I I  
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K B r  

I I I I 
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i0-5 I0-5 10-4 i0-3 10-~ 
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FIG. 5. Compressibility ~'-(R) in the case of crystallization 
nuclei of potassium bromide in an aqueous solution at 
different frequencies of sound: 1, 410kttz; 2, 26ktlz; 3, 

0.4 kHz (a) the function IS(R)I (b) the function O(R). 
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7. ABSORPTION ANt) DISPERSION OF TIlE SPEED 
OF SOUND IN A CRYSTALLIZING LIQUID 

A substantial increase in the absolute value of 
: compressibility [.Yd[, along with the possibility of the 
real part of nuclei compressibility being negative, may 
lead to significant anomalies on sound propagation in 
a crystallizing liquid. 

The sound speed absorption and dispersion in a 
liquid with crystallization nuclei can be calculated 
using the Foldy dispersion equation [18] 

k~a = k~ + 4m~f, (46) 

where n is the number of nuclei of the same radius per 
unit volume of liquid. Foldy's formula (46) incor- 
porates only the monopoly sound scattering by the 
qnuclei. Account can be taken of higher orders of 
multipole expansion using the equation given in ref. 
[19]. It can be shown, however, that the monopoly 
iapproximation alone expressed by equation (46) is 
Sufficient for the crystallization nuclei. In fact, even the 
next dipole term of the expansion that expresses nuclei 
oscillations as a whole turns to be small owing to the 
relation Ap << p. This term should be taken into 
account only for crystallizing solutions for which p' 
and p can differ markedly. But for this case also it is of 
interest to isolate the region where the contributions 
due to phase transformations into the sound speed 
absorption and dispersion become appreciable. 

I I I I 

io 2 H20 

I O - '  

...I iO_Z 

10 - 3  

,o-" / " . . . . . . .  

i0 -s 

,o  "6 ao "~ m - *  Io -3 

R ~  e m  

Fw,. 6. The dependence of the coefficient ofsound absorption 
~fdifferent frequency on the radius R ofcrYstallization nuclei 
n water: solid and dashed-dotted curves show absorption of 
;ound v,'ith account for phase transformations in pure water 
md in water with an impurity of concentration ?o = 17o, 
?espectively. Dashed cu~'es show sound absorption due to 
he thermal mechanism [20], dotted cun'es represent absorp- 
ion of sound due to the viscous mechanism [21]. Cun'es 1, 
/ and 2, 2' correspond to 26 kHz and 0.4 kHz, respectively. 

sound speed absorption and dispersion become 
appreciable. 

By using equation (46) it is possible to obtain the 
following expressions determining the absorption and 
dispersion of sound speed in a liquid with nuclei 

_ _ ~  _ _  ~ =  c . ~ 3 i m f l  ' Ac I 3 c 2x 
z cot', c, 2 r . - - - ~ R e f l ,  (47) 

where Aci = e ta  - c,, c~a is the speed ofsound in a 
liquid with nuclei. The expression for f~ can be 
determined using the above results 

fi  =f~l ~ +f]^ ' ,  (48) 

where fct~ is the amplitude of sound scattering by 
nuclei without account for the effects of phase transfor- 
mations, f]AI is an additional contribution into the 
scattering amplitude f~ due to the effects of phase 
transitions alone. The quantities f~t ~ and f~a) are 
defined by the following expressions: 

= 3 - -U  -  (ds- 2 
k 2 R 3 

3 ' (49) 

ftt^ ~ = K - fl.____.oo Apo92R3. (50) 
3Q 

Equation (49) allows the determination of the 
excessive absorption and dispersion of sound speed 
occurring due to a thermal mechanism which was first 
considered by Isakovich for liquids with inclusions and 
without phase transformations [20]. 

For an equilibrium phase transformation (A = ~), 
the expression forft  can be written as 

f l  = _ 3~ Apo92Rf [l f l o P ' ]  k2R3 (51) 
3 

The absorption coefficient ct and sound speed dis- 
persion Act/ct can then be determined as 

ct = - 2Ap~ocl Im ,X,", (52) 

Ac, e [1 + Apc~ Re ,X# (1 flo P' '~]  (53) 
= - K Ap l J" 

When A = ~ ,  the sound propagation in a liquid 
with crystallization nuclei can also be examined using 
equations (51)-(53), but then it is necessary to take 
into account that in the expressions for K and Q the 
quantity A r ~ in contrast to the equilibrium case. 

The effect of impurities on sound propagation in a 
crystallizing liquid can be taken into account, just as 
in the case of oscillations of crystallization nuclei, 
through a formal change-over A---, A I~ by equation 
(41). 

Sound propagation in crystallizing solutions can 
also be studied by equations (51)-(53) with the sole 
difference that the quantities A and d,, in the ex- 
pressions for K and Q should be replaced by A~ ) and 
d~ ~ according to equation (45). 
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In Figs. 6-8  the solid curves show the calculated 
values of sound speed absorption and dispersion for 
water, while the dashed and dotted curves show the 
effect of impurities. The dashed curves in Fig. 6 show 
the contribution of a thermal mechanism into sound 
absorption [20]. The dotted curves correspond to the 
case of viscous sound absorption [21]. 

Figures 6-8  show a marked effect of phase transfor- 
mations on the absorption and dispersion of sound 
speed. It is seen that the impurities that damp the 
oscillations of crystallization nuclei decrease the sound 
speed absorption and dispersion. Regions of negative 
dispersion ofsound speed are shown in Fig. 8 for water. 
A similar phenomenon is also the case for other 
substances for which d,  > 0. As seen from equation 
(53), the region of negative dispersion appears because 
of a substantial increase in the absolute value (and a 
change in the sign of the real part) of nuclear com- 
pressibility. For solid particles without phase transfor- 
mations this effect is absent. The mechanism of sound 
speed absorption and dispersion is a mechanism of 
non-local relaxation type suggested, probably, for the 
first time by Mandelshtam [22]. 

The above anomalies in sound propagation in ice- 
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containing water are of interest for the study of sound 
propagation in polar regions of the ocean where the 
underwater sound channel is restricted to the ocean 
surface [23], i.e. to the layer filled with sludge ice. 

Higher sound absorption in a crystallizing liquid 
induces stronger acoustic flows, since vf, ,-- ~ [24]. 
These are of interest for the analysis of methods used to 
obtain uniform and fine structure of substances crys- 
tallizing out of a liquid phase in a sound field [-5]. 

8. L O C A L I Z A T I O N  A N D  I N T E R A C T I O N  O F  
N U C L E I  IN A S O U N D  F I E L D  

The appreciable effect of phase transformations on 
the behaviour of nuclei compressibility is of interest in 
regard to the question ofnuclei localization in a sound 
field. It is known 1-25, 26] that foreign particles occupy 
different positions in a sound field depending on the 
sign of the quantity ( in the expression for the force F 
acting on the particle in a field which, in the case of a 
standing sound wave, may be written in the form [26] : 

p2 
F = 4nR z (ktR) 2 ~  ~ sin 2klx, 

p' + 2Ap/3 .YC7 
= (54) 

2p' + p 3fl 

i I ~  I I 
10-* \ H20 

i0 -a 

, , 

i0 -r i0-8 10 .5 i0 -4 I0 ~' 
R, cm 

FIG. 7. The sound absorption coefficient :~ vs the frequency to 
in water containing crystallization nuclei of different radii R : 
1,1',R = 1.3 • 10-'*cm;2,2',R = 2 • 10-3cm;3,3',R = 8 
x 10 -~ cm. Solid curves correspond to the contribution to 

sound absorption of the mechanism of phase transfor- 
mations; dashed cun'es, to the thermal mechanism [20]; 
dashed-dotted line corresponds to co(to) in the case of pure 

water. Concentration e = 10 -5. 

FIG. 8. The sound speed dispersion Ac~/c~ of different 
frequency depending on the radius R of the crystallization 
nuclei in water: 1,410 kHz; 2, 26 kHz; 0.4 kHz. Solid curves 
correspond to water without an impurity; dashed-dotted 
cu~'es, to water with an impurity of concentration 2o = 1%. 
The value of Acl/ct is calculated with account for the phase 
transformations. The horizontal dashed-dotted line cor- 
responds to the dependence of Ac,/c~ on the nuclei radius 
with account for the thermal mechanism alone [20]. The 

concentration e = 10 -6. 
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When ( > 0, the particles occupy pressure nodes. 
he quantity ~ is usually taken to be the adiabatic 
9repressibility fl'/7" [26]. However, it is not  difficult to 
i tend a generalization to an arbitrary compressibility 
r. The quantity ( will then have the form 

I ( r" = p 20' + 2 A p / p + - - ~ -  K e JL r 1 - --K -~p l_] " 

(55) 

T a k i n g  into account that in the absence of phase 
'ansformations K = flo "~ /3'/7' and assuming that Q 
: I, we may obtain equation (54) from equation (55). 
t the presence of crystallization nuclei it is also 
:cessary to account for the inequality Ap << p. Then 
te quanti ty ( becomes 

FB = 

4npR~ R 3 o92 Re ('Yf'I , z 
- -  . ) F z ) e  m ( 5 7 )  

9r z 

where ~ ,  and o,~,r2 are compressibilities of two dif- 
ferent nuclei. For  nuclei of the same radius, the 
Bjerkness forces are 

F ,  = ~=p,o'R~l~l" P~/r 2. (58) 

It follows from the formulae and results given in 
Figs. 2 and 3 that the Bjerkness forces for nuclei 
increase sharply as compared with the case of solid 
particles without phase transformations. 

Acknowledgements--The authors are grateful to V. N. Alek- 
seev and V. P. Yushin from the Acoustic Institute of the USSR 
Academy of Sciences for helpful discussions of the results 
obtained. 

Comparing equations (56) and (53) we can see that 
.e sign of the quanti ty ( coincides with that of the 
Jund speed dispersion AcJc~.  As has been noted 
~ove, the sound speed dispersion can be negative in 
e case of crystallization nuclei. Simultaneously, the 
aantity ( < 0, so that the nuclei change their location 
td move into the anti-nodes of the pressure wave. The 
terval of radii and frequencies at which this phenom- 
ton is observcd for watcr can be determined from 
ig. 8. It should be emphasized that such solid particles 
ithout phase transformations are always located in 
e nodes of pressure wave, i.e. always at ~ > 0. 
It should be noted that a change in the location of 
ystallization nuclei in a sound field depending on 
eir radius and the field frequency bears a re- 
mblancc to the behaviour of bubbles [7, 27]. How- 
'or, these phenomena are of different origin. In the 
;se of bubbles, the reason for such behaviour is traced 
the resonance character of their vibrations, while in 

e case of nuclei it is due to an increase in the absolute 
.lue, and a change in the sign of the real part, of 
~mpressibility owing to phase transformation- 
duced mass transfer. 
Stronger oscillations of crystallization nuclei may 

ad  to an increase of the forces of their interaction. 
he most substantial of these are the forces of Bjerk- 
ess and the forces of K6nig [7]. The former are 
~sociated with the oscillations of inclusions, the latter 
ith the oscillating vibrations as a whole. The Bjerk- 
ess forces are mainly typical of well-compressible 
tclusions such as bubbles. In the case of solid 
articles, the most substantial are the K6nig forces 
.~8]. However, in the case of crystallization nuclei for 
hich Ap << p, their oscillations as a whole relative to 
! e liquid may be neglected. Therefore, for these nuclei, 
t contrast to solid particles without phase transfor- 
rations, the main interaction forces are the Bjerkness 
,rccs [7] 
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NOYAUX DE CRISTALLISATION DANS UN LIQUIDE SOUMIS A UN CItAMP SONORE 

Rdsum6-On &udie thdoriquement les noyaux de cristallisation soumis fi des oscillations radialement 
sym~triques dans des liquides sous-refroidis r des solutions sursatur~es avec un champ sonore. Une 
cristallisation et une fusion pdriodiques se produisent pour les I~lus grandes amplitudes. I1 en rdsulte uue 
interaction non-lin6aire du son avcc le noyau oscillant et un transfert ihermique modifi~, par exemple un lent 
(par rapport au cycle sonore) pompage de chaleur dans le noyau. Un autre aspect de cette interaction non- 
lin~aire est dans le fait que la place des sites de nucldation dans une onde sonore d~pend des dimensions des 
noyaux et de la fr6quence du son - -  situation qui diff6re fortement du cas des particules solides sans 
transformation de phase. On montre que ces trmasformations de phase peuvent accro]tre l'absorption et la 
dispersion du son dans les liquides par rapport aux liquides contenant des particules solides sans 
transformation de phase. On montre aussi que raccroissement d'amplitude des oscillations des noyaux de 

cristallisation augments les interactions avec les autres. 

KRISTALLISATIONSKERNBILDUNG IN FLOSSIGKEITEN IN EINEM SCHALLFELD 

Zusammenfassung--Der Bericht handelt yon der theoretischen Untersuchung der Kristallisationskernbil- 
dung unter radialsymmetrischen Schwingungen in unterkiilten und fibersiittigten L6sungen, die einem 
Schallfeld ausgesetzt sind. lm Verlaufder Schwingung treten periodisisch Kristallisations- und Schmelzpro- 
zesse auf, was sich in h6heren Amplitudeu ausdriickt. 

Dies steigert die nichtlineare Wechselwirkung des Schalls rail einem schwingenden Kern, was einen 
gerichteten W~rmetransport bewirkt. Dabei ',vird W~irme vergleiehsxveise langsam in den Kern gepumpt. Ein 
weiteres besonderes Merkmal der nichtlinearen Wechselwirkung z~vischen dem Schall und dem Kern ist yon 
besonderer Bedeutung; die I.age des Kerns in einer stehenden Welle h~ngt yon der Gr61M des Kerns und der 
Schall-Frequenz ab ein grundlegender Unterschied zu Feststoffen ohne Phasentransformation. Es v,ird 
gezeigt, dab die Phasenverschiebung in kristallisierenden Flfissigkeiten merklich die Absorption und die 
Streuung der Schallausbreitung vergr61Mrt, verglichen mit Fl~issigkeiten, die Feststoffpartikel enthalten und 
keine Phasenverschiebung haben. Es ~vird auch gezeigt, dab eine Erh6hung der Schwingungsamplitude des 

kristallisierenden Kerns die Wechselwirkung der Kerne untereinander verst~'rkt. 

3APO)2hlIIIII KPItCTAJI.I1H3ALI, Ht t  B ")KH]IKOCTH B 3BYKOBOM FIOJ1E 

AnHolauKg--Teope lnqec~:u  ltcc:lellOBaHbl paLtlla.q6no-eltMMeipllqnble Ko.'~e6auna 3apo,,ablWei~ Kpltc- 
Ta.uln3atl int ,  npoucxo.a~tLutie B 3ByKOBO.M no.rle ta Ncpcox.Fla;.K[ICIIIIblX ;.KH,.~KOCTRX |! nepCCblLIlelUlblX 
pacrBopax.  FloKa3allo, qTO cyutCCTBOBaHne Ilepuo,"lnqeCKHX npoLIeCCOB Kpncia,qnlt3an.lln n nBaB:lenn~l 
npn  Ko.lefaHn~x 3apo,,q.blLUe~i FlpnBo~,IIT K yBe..qll�89 aMn,'lllly,/lbl 9l | lX Ko,qc6allnl'l. 9 1 0  O6C'IORIe,qb- 
ClBO cnoco6cTByei  ycH,leHnlo i le,qltnelinoro B3alIMOD, eHCTBI, I$1 3ByKa C ny,qbcupylOIllllM 3apoD.bnlleM. 
O110 IlpUBO,'IHI K RB,qeHIIIO BblnpRMJIC|ItlOI'I Ten~qonepe.n.aqn nptl  KO.'Ie6aHIDtX 3apo.:tblniefi - Me~2.qellnoMy 
no  cpaBllenlno c nepno...q.o.".l �9 3eyKa npot teccy llaKatluBanll~l ien,qa Bny'fpl, 3apohhltLta. ]l_,pyraa 
OCO6CInlOClb ile,qlnleiinoFo B3aUMOB.eficTBnJl 3ByKa c 3apo~IbtttlaMII B b l p a x a e l c a  B 3aBIICnMOCTIt 
Mecla  ,qoKa.qll3alJ, nH 3apo,ahlttleii B CTOSqefi 3ByKOBOH BonHe OT |IX pa3Mepoo it t laClOIbl 3eyKa, 
q-i-o cylL!eCTBelinblM oGpa30M oT:twtaeTca o r  cny, taa r~ep~t , lx qacTliu 6e3 qba3OBblX npeBpamenHfi.  
[lo~za3ano, t l l o  n3-3a ila~'lnq|lR Cl3a3OBblX npeapatu.ell l i i i  nor~qotlleltue n ,['l.|lCIlgp, c|l~ CKOpOCIn 3ayra ,  
pacnpoc lpaH~lo tueFoca  a rpncla.rl:lll]ylOLLInxc~l X<II~KOC'I~tX, co,.q.epxatUllx rBepabm qaclnllbl 6e3 
qba'loBblX npepat l lenni i .  FloKa3ano TaK~KC, ttTO yBe,qnqeHlle axinJlniy~,bl Ko,qe6anllli 3apo.u.bltuei~l 

Epllcl'a,"l.qH3aLI.nH npliBO,,.qlll K FIOBblIIlCn|IIO C|I,'I B3alIMOB.eHClBJD1 |IX i1pyr C l lpyroM. 


