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Abstract—This paper is concerned with the theoretical investigation of crystallization nuclei undergoing
radially symmetric oscillations in supercooled liquids and supersaturated solutions exposed to a sound field.
Periodic crystallization and melting processes occurring in the course of these oscillations are shown to result
in higher amplitudes. This enhances the nonlinear interaction of sound with an oscillating nucleus which
results in the phenomenon of rectified heat transfer, i.e. a slow (as against the sound cycle) process of heat
pumping into a nucleus. Another peculiar feature of the nonlinear interaction between the sound and the
nuclei is evidenced by the fact that the location of nucleation sites in a standing sound wave depends on the
dimensions of nuclei and the sound frequency—a situation differing substantially from the case of solid
particles without phase transformations. It is shown that phase transformations may markedly increase the
absorption and dispersion of the speed of sound propagating in crystallizing liquids as compared with liquids
containing solid particles without phase transformations. It is also shown that an increase in the amplitude of
the oscillations of crystallization nuclei enhances their interaction with each other.
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NOMENCLATURE n, number of nuclei of the same radius per
a. crystal lattice constant; unit volume of liquid;
<, solution concentration; P, pressure;
cn sound speed in a liquid, (/pf)'?; Py, pressure in unperturbed liquid;
s, thermal wave speed, (—iwD)'?; Py pressure in a sound wave;
Cp. specific heat at constant pressure; Pr, modificd Prandtl number,
Co specific heat along the phase equilibrium [@n/3) + {1/pD; ) _
cunve: P,, sound pressure at which dR/dt = 0;
d,. crystallization curve siope, (0T/0P), ; 0, factor accounting for the rclatiqnsbip
490, slopc of the curve of equilibrium between external pressure and that inside
solubility; a nucleus, dP/dP’;
2, quantity characterizing nonlinearity of r spacc-depen_dem (radial) variable;
the crystallization curve, (62T/2P?),; R, nucleus radius;
1, slope of adiabatic curve, (6T/8P)s; S, entropy;
D, thermal diffusivity ; T, temperature;
D, diffusion coefficient T, temperature in unperturbed liquid;
WS scattering amplitudes; T, cquilibrium temperature of pure liquid
1, mass flux through unit surface of nucleus; crystallization;;
s Boltzmann's constant T, equilibrium temperature of crystalli-
<y sound wavenumber, w/c, ; zation of:'1 liquid with impurity;
(. wavenumber of thermal wave, w/c, = AT, supercooling of pure liquid,
(iw/D)' 7 To(Po) = To3
(e wavenumber of diffusional wave, L, time;
(iw/D )2 u, radial displacerent;
<, intrinsic nuclear compressibility; U, velocity at the in}erface; ‘
A, module of complex compressibility of”; ¥, 0, vclocit)f and radial velocity component,
L heat of melting; respectively;
e heat of dissolution; AV, volume change on dissolution.
ny, m,, massof molecules of a solvent and solute,
respectively; Greek symbols
t;.ny  number of particles of a solvent and % thermal  coefficient  of  volumetric
solute, respectively; expansion; .
Vi Avogadro’s number; N coelficient of isothermal compressibility;
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b specific heat ratio;

4, symbol which indicates that a small va-
riation about a mean value of the quantity
is considered (dp, OR etc.);

:, volumetric concentration of solid phase,
47nR3/3;

¢, coefficient of volumetric viscosity;

1, coefficient of shear viscosity;

0, phase of complex compressibility J";

thermal conductivity;

‘thermal wave length, (2D/w)'?;

kinetic coefficients determining non-
equilibrium condition of crystallization of
pure liquid and liquid with an impurity,
respectively;

A©, kinetic coefficient characterizing decom-
position of supersaturated solution;

1w, Lamé coefficient;;

o, density;

g, surface tension coefficient ;

w, circular frequency of sound.

Subscripts

o, indicates that the values taken along the
phase equilibrium curve;

R, the value of the quantity taken at r = R;

S, the value of the quantity taken at §
= const.

Superscripts

{ > or, means averaging over the sound cycle
(e.g. {R> = R);
' quantity refers to a nucleus;
5 denotes a time derivative (R = dR/dtetc.).

1. INTRODUCTION

INTEREST in the study of the dynamics of solid phase
nuclei in a sound ficld has been engendered by the
problem of the effect of sound on the structure of
substances crystallizing out of liquid phase [1-5] and
by the studies of sound propagation in a crystallizing
liquid 5, 6]. Numerous experiments show that the
exposure to sound of the process of crystallization
promotes appreciable decomposition of the substance
forming from a melt and the attainment of its uniform
structure. Possible mechanisms for this effect have
been suggested [ 1-5]. However, as yet no theory of this
phenomenon has been advanced and the mechanism of
sound interaction with a separate nucleus of a solid
phase is as yet unknown [3]. There is also a distinct
lack of theoretical work on the mechanism of sound
speed absorption and dispersion in a crystallizing
liquid containing solid phase nuclei [5, 6]. The prob-
lems mentioned above are the concern of this
contribution.

A characteristic feature of the behaviour of solid
phase nuclei in a sound-exposed liquid, distinguishing
them from ordinary solid particles, is the existence on
their surface of periodically alternating processes of
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melting and crystallization. This causes an additional
change in the nuclear volume as a consequence of mass
transfer during phase transformations. As will be
shown below, this eventually leads to an additional
change in compressibility and to an increase of the
amplitude of radially symmetric oscillations of nuclei,
as well as of the sound energy dissipation nearit. Asa
result, abnormal absorption and dispersion of sound
speed might be expected. Higher sound absorption,
causing the acceleration of acoustic flows, promotes
the attainment of a uniform structure of substances
crystallizing out of a liquid state in a sound field [5].
The growth of radially symmetric oscillations of nuclei
due to mass transfer may also lead to anincrease in the
forces of interaction between the nuclei, e.g. the
Bjerkness forces [7, 8]. This, in particular, may be a
very important factor in the formation of the fine
stucture of substances crystallizing from melts under
the effect of sound.

Physically, sound interaction with crystallizing nuc-
lei can be explained as follows. For simplicity, let us
assume that the nucleus is spherical with radius R.
Suppose an harmonic sound wave P, exp(—iwt +
ik,r) is incident on it. The temperature of the nuclear
surface T, at each time instant during a quasi-
equilibrium phase transition‘is shown in Fig. 1 by
points on the phase equilibrium curve 1. The tempera-
ture of the liquid near the nucleus surface follows the
sound pressure along the adiabatic curve 2. Periodi-
cally the liquid adjacent to the nucleus surface is
locally supercooled or superheated by the amount
AT, = T, — T, which leads to the alternating
processes of crystallization and melting. The resulting
mass transfer causes an additional change in the
nuclear volume. The liquid starts to crystallize on arise
of pressure—an additional change in the volume is
positive, i.e. it competes with a decrease in the nuclear
volume as a result of mechanical compression. One can
readily conceive a situation when a change in the
nuclear volume due to mass transfer becomes larger
than that produced by mechanical compression only.
Then an effective negative compression of the nucleus

Po + P

Po

Ts(Po+Pn) T,(Po+Pn) T

F1G. 1. Schematic representation of the phase state of a
crystallization nucleus in a sound field.
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will appear to have occurred. Since mass transfer
occurs on the surface of the nucleus, while compression
takes place throughout its volume, the case described
may arise only at sufficiently small radii when the
surface effect is appreciable. Under these conditions a
substantial increase in the amplitude of nuclear oscil-
lations in a sound field is to be expected. It is evident
that the heat transfer processes near the nuclear
surface should also be considered, since the crystalli-
zation and melting phenomena are very sensitive to the
conditions of phase transition heat removal from the
interface. Thus, the oscillations of crystallization nuclei
in a sound ficld may be considered by simultaneously
solving the hydrodynamic equations and the equations
that describe the kinetics of phase transitions. The
system of equations obtained is solved below using
perturbation theory.

2. BASIC ASSUMPTIONS AND INITIAL SYSTEM
OF EQUATIONS

If the size requirement for the nucleus compared
with the wavelength in a liquid is met, k;R « 1, then
the temperature and pressure distribution far from the
aucleus can be written as

P(or,t) =Py + P e i,
T(x,0) =Ty + dgPe™ it

(1)

These boundary conditions represent perturbations, in
:esponse to which the nucleus undergoes radially
symmetric oscillations about some radius R which, in
urn, can vary with time as

R(t) = R(t) + SR(t), R(t) = <R()>

w t+ 2n/e
= EJ R(ndr. (2)
t

Henceforth, only forced oscillations of frequency @
vill be considered, then 6R(t) = R,, exp(—iwt). In
loing so, the following relationships will be assumed

[6R| « R, |I?| « |8R| = w|R]. 3)

lhe quantity 6R is assumed to be linear in amplitude
°n and the quantity R to be quadraticin P,,. We may
1ssume that similar relationships hold for other physi-
:al quantities: pressure, temperature and density.
[hese assumptions allow one to separate the equations
or linear oscillating values of the quantities from those
or averaged values.

A spherical system of coordinates locating the origin
it the nuclear center is used. For mean values of
[uantities in the quadratic approximation of the
serturbation theory we may write the following hy-
Irodynamic equations:

pLVY) + V{pdv) = 0, 4)
P = G n+ C)V(Vv)

- §V<5v2> + V{6P(p/p)y, (5)

V{(VT)y =Vq, q = pCKLv(6T — ddP))

+ {ov [51’ - G" + c)v&]}_ (6)

Linear perturbations in the liquid are described by the
linearized hydrodynamic equations:

dp + pVév =0, )

4
pov + V6P = — n{V[Vév]} + <§ n+ C>V(V 8v),
(®)
8T — dgoP = DV2ST, D =x/pCp.  (9)

The spherical solid nucleus is assumed to be iso-
tropic. Taking into account the condition k, R « 1, the
pressure inside the nucleus may be considered the
same everywhere,

P(r,t)=P(R, 1) = Pit), r<R. (10)
The remaining equations for the isotropic nucleus
coincide with equations (4), (6), (7) and (9) provided
thaty = { = 0.

For the above equations to be solved, it is necessary
to formulate the boundary conditions. The conditions
far from the nucleus are expressed by equations (1). At
the center of the nucleus the absence of any singularity
is assumed: T'(0, 1) < oo, VT'|, .o = 0. In a general
case, the joining of solutions at the interface of the
nucleus requires five boundary conditions [the press-
ure and temperature in the nucleus and liquid as well
as the radius R(t) are unknown quantities].

The first three boundary conditions can be obtained
from the general mass, momentum and energy con-
servation laws [7, 9, 10]. The mass and momentum
conservation equations yield

PR -U)=p(R-U)=1J, (11)
P’R=PR+23+J2A—’p‘
R r'p
U (4 e (v
+ [4»:5 3 (5»; - c)wmk] — 4 [% - (%’R]
(12)

The energy conservation equation can be written in
the linear and quadratic approximations as

LSJ = k/(V6T')p — K(VST)g, (13)
JL— (o {(c',, = 0T« — %apk
_128R _tp
P RR pp
sU 4
x (4;]?>— (511 + C)(V 5v)R}>
=<K (VT — (W(VT)p). (14)
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The remaining boundary conditions follow from the
relations established experimentally. The fourth boun-
dary condition accounts for the continuity of tempera-
ture on the nucleus surface [12, 13]

TR, 1) = T(R, t) = Ty. (15)

The fifth boundary condition is the equation of
crystallization kinetics [12, 13]

J=pA(T,— Ty, A=alp/yT,). (16)

This equation holds for a large number of substances
(metals, cryogenic liquids, a large class of inorganic
liquids) that satisfy the condition L/ks TN, < 2[5,12,
13].

The quantity T, = T_(P) is the temperature cor-
responding to pressure P along the phase equilibrium
curve; it can be found, for example, from the require-
ment for the equality of chemical potentials of liquid
and nucleus [14]. In the quadratic approximation of
the perturbation theory the quantity T, can be written
as

T,=To+ AT+ d, ((Pr— Py)

p dP
x [1 —ET(PR— Pp)

?

- A’—ﬂ (Pr— PR)} + %d‘f’(PR ~ Py (17)

Here it is necessary to note the difference in methods
of averaging the boundary conditions and hydrody-
namic equations. The averaging of boundary con-
ditions is carried out on the moving surface of the
nucleus which oscillates with the sound frequency,
while the hydrodynamic equations are averaged at a
fixed point in space. For these averaging operations to
be matched, the function Y(R) = (R + 6R), pre-
scribed at the nucleus surface, is expanded as a Taylor
series in the neighbourhood of the point R and
averaged in the quadratic approximation [9]

Yy = ¥Ygd + (BRV)OY) .

Note that within the quadratic approximation the
value of {/g> coincides with the corresponding value
of (> at the fixed point of space. Equation (18)
completes the formulation of the initial system of
equations.

(18)

3. FORCED LINEAR OSCILLATIONS OF NUCLEL

The forced radially symmetric vibrations or oscil-
lations of nucleation centers in a pure liquid were first
considered in detail in [14]. We shall limit our
discussion to some basic concepts which will be
required later. The scattering of a plane sound wave on
a spherical nucleus in the monopolic approximation is
considered, so that pressure and temperature distri-
butions in a liquid can be written as
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M . tkyr
5P(r) = 5P, {sm kyr lc
k,r r
cik:I
+f2 . }v 0P = P,c'*, (19)
H . ik
(ST(!‘) — ‘1551’0 {sm ]\11‘ +f1 €
k,r r

ik.r
f2 e ~}' 0)

B apcdy(1 — Pr) T

The liquid velocity field can be determined with the
aid of equations (7) and (8) subject to the conditions
(19) and (20). The temperature distribution inside the
nucleus can be found from the solution of the heat
conduction equation (9) inside the nucleus. Then

iwR
(VoT)g = — %((W’R —d6P)o(kR) (21)

where ¢(z) = 3(zcth z — 1)/z%, k" = (—iw/D’)' % The
velocity of nuclear particles on the interface is de-
termined by integrating the continuity equation (7)
taking into account the state equation dp'/p’ =
BoP — 8T

SU = %[ﬁapk — & 98Ty,

B

p==+d ods
7

The nuclear radial fluctuations can be written then
as

SR K
— = 8P,
R 30 °
K po’R* G (20
{_ K _po’R? G (20 .
€ 31—ikR 3 (R * 4""")’
(23)
C C,Ch
K=8—-—-o—-=-2La)dg
Bo—7 (qo C,C )f,v;
B Crg:?
G= ~ + L (DgApd,,, (24)
Po=b s atag— ay-22_,
I4
. PCpl —Kk,R
p'Cp (k:R)*’ (25)
i} o ChR(p — D)
=(1 - o=t (26
§=(-iwr) =TT (26)

As is shown in ref. [14], K is the intrinsic compress-
ibility of the nucleus, K = — (1/V)(dV/dP’), while the
quantity 4~ = K/Q is the compressibility of the
nucleus considered as an element of a two-phase
medium or )" = —(1/V)(dV/dP). The parameter ¢
characterizes the non-equilibrium nature of phase
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transformation. For a quasi-equilibrium phase trans-
formation ¢ = 1, which, at small field frequencies, is
also the case for liquids having a high enough kinetic
coefficient A. Conversely, the assumption that A = 0
yields the case of solid particles without phase
transformations.

Figures 2 and 3 show the relation #(R) = | 4| e~
for hydrogen and water. It can be seen that at small
nuclear radii the absolute value of compressibility | 47|
is much greater than the value of | "] which is observed
at large R and which is asymptotical to the adiabatic
compressibility #'/y". This increase in | #7| is associated
with an additional change in the nuclear volume due to
phase transformations on its surface [9, 14]. The
occurrence of a maximum and the subsequent decrease
in the function | #(R)] are attributed to the damping
effect of surface tension forces on the sound pressure
[14].

The analysis of the compression phase O(R), pre-
sented in Figs. 2 and 3, shows the nuclear compress-
ibility as having a negative sign. For substances with
a positively sloped phase equilibrium curve {d, > 0}
this property is associated with a change in the nuclear
volume due to crystallization-induced mass transfer
competing with the change caused by mechanical
compression. At large R, when the surface effect is
small, the nuclear compressibility is positive, but at
small R, this effect becomes significant and resultsin a
‘negative compressibility due to the prevailing influence

L'n’l. cm? dyn”!

O-IO

-n/2

g, rad

1073 10°2

F1G. 2. Compressibility 2/ (R)in the case of a crystallization
nucleus in water at different sound frequencies: 1,410 kHz; 2,
26 kHz; 3, 0.4 kHz. (a) the function | #"(R)]. (b) the function
O(R). Solid curves correspond to the liquid without an
impurity ; dashed curves relate to the liquid with an impurity
: having &, = 1%.
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of mass transfer. In particular, the minimum in the
curve |.#(R}| for hydrogen is caused by competing
mechanical compression and mass transfer. In the case
of water, for which d, < 0, this minimum is absent
since the effect of mass transfer and mechanical
compression on a change in the nuclear volume is of
the same sign.

4. THE EFFECT OF RECTIFIED HEAT TRANSFER
IN OSCILLATIONS OF NUCLEI
In order to determine the behaviour of the mean
radius R{z), it is necessary to consider the averaged
hydrodynamic equations (4)-(6) subject to boundary
conditions (11), (12) and (14)-(16).
Integration of the Navier-Stokes equation (3) tak-
ing account of the continuity equation (4) and equa-
tions (7), (8) and (18) yields the following result:

(Pg> = Py + {OR(VSP)p>
R dr
— p8U?) — 2Pf oty P 27)

On integrating the continuity equation (4) over the
nuclear volume and applying equation (18), we obtain

— L a8y
U = _<—p, SU'D + («SR(—Er )}
8J (6p (5R)
=S +2—=1>. (28
G2 ) o

The integration of the heat conduction equation (6)
from r to oc and from R to « gives

1078 -

1078 |-

}#], em? dyn™

10"% |-

10-10 1 ! ! 1 ]

w/2 =

g, rod

Fi1G. 3. Compressibility for crystallization nuclei in hydrogen
at different sound frequencies. Details as Fig. 2.
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KT = = 2L Ta— To = CSRIVST)))

1 R
+ R J qdr + qg, (29)

x

where ¢ is given by equation (6). The expression
{K'(VT')g is found by integrating equation (6) with
the condition VT'|, _, = 0,

K(VT)py = —Cpl0J(6T g — ds5P%))
. oR
+(OUSPRy — 2k F(V&T’)R) (30)
With the help of the expressions obtained we can

determine the mean rate of crystallization nucleus
growth in a supercooled liquid

o pZG
R =AR)|AT, — d,—= —
@ [a7o— 4, 2% a7,
K k!
= |1+
AR) p'LR[ + p'LRA] &)

where the quantity AT is

5
AT = ¥ AT, AT, = —d?

=1
x |5 <OPR — L (PP — P
2 R Ap R R *

R
AT, =d, [p(5U2> + ZpJ 6v?) (32)

x (i_l’ + %(5.]2) — <(5R(V5P)R)J,

1 R
AT, = - j {ovéP) dr,

1 (R
AT = BJ (SR(T — dsSP))dr.

All of the terms constituting the sum AT have a clear
physical meaning. The first term is associated with the
nonlinearity in the phase equilibrium curve. For most
substances ({‘f’ < 0, therefore, this term leads to a
decrease in R. The term AT , is due to the surface effect
described for the first time by Hsieh and Plesset [7, 15]
with reference to the dynamics of gas bubbles in a
sound field. The term AT, accounts for the absorption
of sound energy as a consequence of the work done by
the field on the liquid flows set in motion by this field.
The quantity AT is the mean convective heat flux
from the liquid to the nucleus caused by the motion of
liquid particles under the action of sound. As a whole,
the quantity AT depends on the work of the field and
therefore AT = B(R, w)P?, where B > 0. The
appearance of a temperature difference is associated
with a pcculiar phenomenon of heat pumping into the
nucleus. Similar to the case of vapour bubbles [ 7], this
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cffect has been termed the effect of rectified heat
transfer [9]. .

Next the sound pressure amplitude at which R = 0
will be determined. This case occurs at a certain
threshold pressure P, determined from

p 20 172
e[ D] o

The function B(R, w) can be found by the following
approximate equation:

42 p 20
B(R,w)= — 2|1 —2-——|X|cosO
4 Ap R

A R A RV
+ Edl {dﬂpCa[l +—+ Z—I)-Fg <—> :lcoso
6pC,p s P Ar

R Ap R
+ 2 sing I:dapC,, 222014 d,,pc,,F',):I } (34)
p

Y- L

where 2, = (2D/w)'?, Fy and Fj are respectively the
real and imaginary parts of the integral

Fy= '[ e ™ (1 + x)"3dx,

0
«=(1 —i)Rfir.

Figure 4 shows the curve P,(R) at different field
frequencies for hydrogen. This figure also contains a
schematic representation of the function Pi(R). A
straight line corresponding to the magnitude of the
sound pressure P, willintersect the curve P,(R)at two
points:at R = R_;,and R = R

Since a nucleus grows only at P, < P,,it can be seen
that the point R, is unstable, while the point R, Is

maxe

|
1073
R, cm

10-2

FiG. 4. The function P,(R)for a supercooled hydrogen (AT,

= 1072 K) taking account of an impurity with concentration

¢o = 19, at different frequencies of sound: 1, 04 kHz; 2,

26 kHz; 3, 410 kHz. Solid curves, pure liquid ; dashed curves,
liquid with impurity.
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stable with respect to small departures of the radius R
from these values. Thus the sound field narrows the
wide size distribution of nuclei in the vicinity of the
point R, This provides a principal possibility for the
formation of a uniform and fine structure of the solid
substance crystallizing in a sound field. It should be
noted, however, that substantial amplitudes of the
sound pressure are required for the above phenomena
to be observed at large supercooling. The analysis
shows that the effect of rectified heat transfer is greatest
in cryogenic liquids. In such liquids the effect can be
recorded by relatively simple methods. In the case of
water this effect is less pronounced, due mainly to an
increase in the slope of the phase equilibrium curve
(decrease of [d,|). For metals, this effect is even weaker
than for hydrogen and water.

t

5. THE EFFECT OF IMPURITIES ON THE DYNAMICS
i OF NUCLEI IN A SOUND FIELD
~ In practice a crystallizing liquid always contains
impurities of other substances that constitute the
solution. The effect of an impurity on nuclei dynamics
is qualitatively described below, assuming that the
impurities do not interact chemically with the basic
liquid (solvent) and that impurity concentration is
small. 1t is known [16] that when an impurity dissolves
in a solid phase worse than in a liquid one, its presence
*in the liquid decreases the equilibrium crystallization
temperature. Then, as a nucleus grows, the impurity,
displaced from the crystallization front, forms a more
concentrated solution ncar the surface than that of the
liquid far from the nucleus. The higher concentration
causcs a further decrease in the equilibrium crystalli-
zation temperature which partially makes up for the
supercooling under the action of which the nucleus
grows. As a result, the rate of its growth decreases. The
opposite effect is observed in melting—a decrease in
the concentration of impurity gives rise to an increase
of the equilibrium crystallization temperatures. This
too leads to a lower rate of radius change. Con-
sequently, the impurity exerts a damping effect on
crystallization nuclei oscillations in a sound field.
Clearly, this results in a smaller compressibility of the
nucleus, as well asin a smallereffect of the rectified heat
transfer.

For describing the effect of impurity on the dy-
namics of nuclei, it is necessary to consider an ad-
ditional equation, the diffusion equation which go-
verns the distribution of the impurity. It can be shown
that the remaining equations presented in Section 1
will retain their forms in the weak impurity con-
centration approximation. The diffusion equation can
be written in the linear and quadratic approximations
as

8¢ = DN, Vipev) =V{pDNc)  (35)

where D, is the diffusion coefficient, ¢ = n,m,/(nym; +
n,m,)and n, and n, are the number of particles of the
solvent and solute, respectively. On the assumption
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that diffusion in a solid phase is neglected, (Vc')g = 0,
the boundary condition for equation (35) may be
written as

Jep = — pDAVO)p (36)

The effect of impurity on the equilibrium crystalli-
zation temperature can be related to the condition of
equality for the chemical potentials of phases ex-
pressed with account taken of the impurity [16]

TO =T, — (o
ny,

(37

The equation for the crystallization kinetics of liquid
containing an impurity will change its form compared
with that of equation (16). The quantity T, will be
replaced by T determined from equation (37).

The solution of the problem can be obtained as
follows. The expression for (Véc) following from the
solution of equation (35) has the form
1 —ikR

(Véeyg = — (33)

OC

Substitution of expression (38) into the boundary
condition (36) yields
_Rey  0J
" pD. 1 —ikR’

6(:R 39)

Then, the oscillations of the equilibrium crystallization
temperature of the liquid with an impurity, 6T%, can
be expressed in terms of the oscillations of mass flux 6J.
By substituting the resulting value of 8T into the
equation for the crystallization kinetics of an impurity-
containing liquid, we find that it takes on the form
formally coinciding with equation (16) which describes
crystailization of pure liquid but with a different
kinetic coefficient, i.e. A determined at ¢, = c(t, o)
by the following equation:

: RkpT? 1 -!
Pafetint _ ° U o
D, myL 1 —ikR

By using the relationship for the diffusion coefficient
in the form D, = kpT/6nna [17] and using equation
(16) for A, the quantity A® can be written as
9p" &GR 1 -1
2p a 1 —ikR |

A9 =A {1 +

Aw=AD+

m,
Co = Co—-
m,

(41)

In Figs. 2 and 3, the dashed lines show the effect of an
impurity on oscillations of the crystallization nuclei in
water and hydrogen. We can see that the impurity
decreases the value of || and shifts the region in
which Re " < 0. )

Similar to the case of linear oscillations of nuclei, we
can consider the effect of impurity on the mean rate of
nuclei growth, R. It can be shown that the effect of an
impurity on the mean rate R is given by the replace-
ment of quantities AT and A in the function A(R) of
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cquation (31) by the quantities which depend on the
impurity concentration

kT | p'p
{c) B__ —
ATy, — AT = AT, m d, pco, @2)

9p &R
A-»A‘;>=A[1+—”—C°—] :
2p

The expression for B(R, w) formally remains un-
changed, the impurity being accounted for in the
expressions for || and 0.

In Fig. 4, the dashed curves show the influence of
impurity on the behaviour of the function P,(R). The
impurity is shown to lower the effect of rectified heat
transfer.

Probably the most pronounced influence is exerted
by an impurity on the behaviour of the rate R. Thus, for
aluminum the value of 4 in the presence of an impurity
with the concentration ¢, = 19 decreases by about a
factor of 6. Since R(t) ~ (Af)!?, it is seen that the
impurity will decrease the nuclear radius by 2.5 times
relative to the case with no impurity. This effect of
impurity on the structure of substances crystallizing
out of melt has been noted earlier in a number of works

[2-4].
6. DYNAMICS OF NUCLEl UNDER THE
ACTION OF SOUND IN CRYSTALLIZING
SOLUTIONS
For a supersaturated solution, the phase transfor-
mations are periodically alternating processes of pure
solid substance dissolution and solution decompo-
sition into a liquid (solvent) and a solid substance, i.e.
the essential difference from the cases considered above
is in the ‘driving force’ of phase transformation:
oversaturation instead of supercooling of the solution.
The basic hydrodynamic equations given in the
previous sections are valid for the present case also.
The difference is observed in the boundary condition
for the diffusion equation which acquires the form

Jeg=J — pD(Vc)p 43)

The quantity Lisreplaced by the heat of dissolution L,
and for an oversaturated solution the equation of
crystallization kinetics (16) is replaced by the relation
cg = ¢,(P, T), where the subscript ¢ means that the
quantity is taken along the curve of solution
saturation.

The problem of nuclear oscillations in solutions may
be solved as follows. The equilibrium concentration
oscillations on the nuclear surface are

dc oc
Scp= 6_;6TR + a—;éPR
myc,
T kgT?

L(8Tp— d96Pg). (44)

By substituting equation (38) for the concentration
gradient, taking account of equation (44), into the
boundary condition (43), we obtain the cquation for
the crystallization kinetics which coincides in -form
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with equation (16) with the sole difference that the
quantity d, is replaced by d® and A by AY). Thesc
quantitics are determined from

AV, T
L k]

(3

) —
d9 =

p D, my 1 —-1kR
AL == < L <.
P V= kyT? ™ R (45)

All the remaining equations, which are valid for the
dynamics of nuclei in a supercooled liquid having no
impurities, are also applicable for the analysts of nuclei
dynamics in a supersaturated solution provided the
quantities d, and A are replaced by d% and A%,
respectively.

Figure 5 shows the function 2(R) for a nucleus of
potassium bromide in a supersaturated aqueous sol-
ution. It is seen that the basic trends typical of the
dynamics of nuclei in a supercooled liquid are also
observed for the dynamics of nuclei in a supersaturated
solution. The difference in the behaviour of the com-
pressibility function is evidenced by a marked shift of
the function J(R)into the region of small dimensions.
This is attributed to a substantial difference between
thermal diffusivity D and diffusion coefficient D, that
determine the scale lengths for heat and mass transfer
(the length of a ‘thermal or ‘diffusional’ wave).
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7. ABSORPTION AND DISPERSION OF THE SPEED
OF SOUND IN A CRYSTALLIZING LIQUID

A substantial increase in the absolute value of
.compressibility [, along with the possibility of the
real part of nuclei compressibility being negative, may
lead to significant anomalies on sound propagation in
a crystallizing liquid.

The sound speed absorption and dispersion in a
liquid with crystallization nuclei can be calculated
using the Foldy dispersion equation [18]

i3, = ki + 4anf; (46}

where n is the number of nuclei of the same radius per
unit volume of liquid. Foldy’s formula (46) incor-
‘porates only the monopoly sound scattering by the
'nuclei. Account can be taken of higher orders of
‘multipole expansion using the equation given in ref.
[19]. It can be shown, however, that the monopoly
approximation alone expressed by equation (46) is
sufficient for the crystallization nuclei. In fact, even the
next dipole term of the expansion that expresses nuclei
oscillations as a whole turns to be small owing to the
relation Ap « p. This term should be taken into
account only for crystallizing solutions for which p’
and p can differ markedly. But for this case also it is of
interest to isolate the region where the contributions
due to phase transformations into the sound speed
absorption and dispersion become appreciable.

cm

L/¢,

F1G. 6. The dependence of the coefficient of sound absorption
>f different frequency on the radius R of crystallization nuclei
n water : solid and dashed-dotted curves show absorption of
sound with account for phase transformations in pure water
ind in water with an impurity of concentration & = 1%,
‘espectively. Dashed curves show sound absorption due to
he thermal mechanism [20], dotted curves represent absorp-
ion of sound due to the viscous mechanism [21]. Curves 1,
" and 2, 2’ correspond to 26 kHz and 0.4 kHz, respectively.
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sound speed absorption and dispersion become
appreciable.

By using equation (46) it is possible to obtain the
following expressions determining the absorption and
dispersion of sound speed in a liquid with nuclei

3 ¢ Ac, 3

a=§n—mlmfl, —=—=z

. AT Refy, (47)

where Ac, = ¢, — ¢y, ;¢ IS the speed of sound in a
liquid with nuclei. The expression for f; can be
determined using the above results

fi =10+, (48)
where f'? is the amplitude of sound scattering by
nuclei without account for the effects of phase transfor-
mations, [V is an additional contribution into the
scattering amplitude f; due to the effects of phase
transitions alone. The quantities f? and f{¥ are
defined by the following expressions:

wZRB 4 ’ @ 1)
7o =t L - |

30 |y ds o—Q
KR
37 {49)
K — B,
W= _ — "2 Apw?R3 50
S 30 pw (50)

Equation (49) allows the determination of the
excessive absorption and dispersion of sound speed
occurring due to a thermal mechanism which was first
considered by Isakovich for liquids with inclusions and
without phase transformations {20].

For an equilibrium phase transformation (A = o),
the expression for f; can be written as

. K 2p3 Bop kfRJ
f1~-—§§prR [1 KZ; -5 (51)

The absorption coefficient « and sound speed dis-
persion Ac,/c, can then be determined as

o= — -;-prc, Im X, (52)

Ac, ¢ Bo ¢
—_— == Apc? 1——— 1
o > [l + Apci Re J{’( K &p (53)

When A = oo, the sound propagation in a liquid
with crystallization nuclei can also be examined using
equations (51)-(53), but then it is necessary to take
into account that in the expressions for K and Q the
quantity A # oo in contrast to the equilibrium case.

The effect of impurities on sound propagation in a
crystallizing liquid can be taken into account, just as
in the case of oscillations of crystallization nuclei,
through a formal change-over A — A by equation

41).

( S)ound propagation in crystallizing solutions can
also be studied by equations (51)-(53) with the sole
difference that the quantities A and d, in the ex-
pressions for K and Q should be replaced by A and
d¥ according to equation (45).



298

In Figs. 6-8 the solid curves show the calculated
values of sound speed absorption and dispersion for
water, while the dashed and dotted curves show the
effect of impurities. The dashed curves in Fig. 6 show
the contribution of a thermal mechanism into sound
absorption [20]. The dotted curves correspond to the
case of viscous sound absorption [21].

Figures 6-8 show a marked effect of phase transfor-
mations on the absorption and dispersion of sound
speed. It is seen that the impurities that damp the
oscillations of crystallization nuclei decrease the sound
speed absorption and dispersion. Regions of negative
dispersion of sound speed are shown in Fig. 8 for water.
A similar phenomenon is also the case for other
substances for which d, > 0. As seen from equation
(53), the region of negative dispersion appears because
of a substantial increase in the absolute value (and a
change in the sign of the real part) of nuclear com-
pressibility. For solid particles without phase transfor-
mations this effect is absent. The mechanism of sound
speed absorption and dispersion is a mechanism of
non-local relaxation type suggested, probably, for the
first time by Mandelshtam [22].

The above anomalies in sound propagation in ice-

F16.7. The sound absorption coefficient x vs the frequency w
in water containing crystallization nuclei of different radii R :
LU,R=13x10"*cm;2,2,R=2x10"*cm;3,3,R=8
x 107 cm. Solid curves correspond to the contribution to
sound absorption of the mechanism of phase transfor-
mations; dashed curves, to the thermal mechanism [20];
dashed-dotted line corresponds to x(w) in the case of pure
water. Concentration ¢ = 1075,
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containing water are of interest for the study of sound
propagation in polar regions of the ocean where the
underwater sound channel is restricted to the ocean
surface [23], i.e. to the layer filled with sludge ice.
Higher sound absorption in a crystallizing liquid
induces stronger acoustic flows, since 1y, ~ « [24].
These are of interest for the analysis of methodsused to
obtain uniform and fine structure of substances crys-
tallizing out of a liquid phase in a sound field [5].

8. LOCALIZATION AND INTERACTION OF
NUCLEI IN A SOUND FIELD

The appreciable effect of phase transformations on
the behaviour of nuclei compressibility is of interest in
regard to the question of nuclei localization in a sound
field. It is known [25, 26] that foreign particles occupy
different positions in a sound field depending on the
sign of the quantity { in the expression for the force F
acting on the particle in a field which, in the case of a
standing sound wave, may be written in the form [26]:

2
F = 4aR?(k,R) sz { sin 2k, x,
2pcy
"+ 2Ap/3 o
(P 280/3 Ay (st
20"+ p 3p

Tt

e m e o e = e = e

FiG. 8. The sound speed dispersion Ac,/c, of different
frequency depending on the radius R of the crystallization
nuclei in water: 1,410 kHz; 2, 26 kHz; 0.4 kHz. Solid curves
correspond to water without an impurity; dashed-dotted
curves, to water with an impurity of concentration ¢, = 1%,
The value of Ac,/c, is calculated with account for the phase
transformations. The horizontal dashed-dotted line cor-
responds to the dependence of Ac,/c, on the nuclei radius
with account for the thermal mechanism alone [20]. The
concentration ¢ = 1078,
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When { > 0, the particles occupy pressure nodes.
he quantity " is usually taken to be the adiabatic
smpressibility §/7° [26]. However, it is not difficult to
ttend a generalization to an arbitrary compressibility
7. The quantity { will then have the form

A 2 ’
e (1 =B,
3 K Ap

(55)

, P +20p/3
% +p

Taking into account that in the absence of phase
ansformations K = fi, ~ f'/’ and assuming that Q
: 1, we may obtain equation (54) from equation (55).
1 the presence of crystallization nuclei it is also
scessary to account for the inequality Ap « p. Then
1e quantity ¢ becomes

L Bo o
= 3[1 + Ape3Re Ji’(l - K"X—p)] (56)

Comparing equations (56) and {53) we can see that
. sign of the quantity { coincides with that of the
wund speed dispersion Ac,/c,. As has been noted
yove, the sound speed dispersion can be negative in
e case of crystallization nuclei. Simultaneously, the
1antity { < 0, so that the nuclei change their location
1d move into the anti-nodes of the pressure wave. The
terval of radii and frequencies at which this phenom-
1on is observed for water can be determined from
ig. 8. Tt should be emphasized that such solid particles
ithout phase transformations are always located in
e nodes of pressure wave, i.e. always at { > 0.
It should be noted that a change in the location of
ystallization nuclei in a sound field depending on
eir radius and the field frequency bears a re-
mblance to the behaviour of bubbles [7, 27]. How-
er, these phenomena are of different origin. In the
ise of bubbles, the reason for such behaviour is traced
the resonance character of their vibrations, while in
e case of nuclei it is due to an increase in the absolute
lue, and a change in the sign of the real part, of
ympressibility owing to phase transformation-
duced mass transfer. :
Stronger oscillations of crystallization nuclei may
ad to an increase of the forces of their interaction.
he most substantial of these are the forces of Bjerk-
ess and the forces of Kénig [7]. The former are
ssoctated with the oscillations of inclusions, the latter
ith the oscillating vibrations as a whole. The Bjerk-
zss forces are mainly typical of well-compressible
iclusions such as bubbles. In the case of solid
articles, the most substantial are the Konig forces
28]. However, in the case of crystallization nuclei for
hich Ap « p, their oscillations as a whole relative to
1e liquid may be neglected. Therefore, for these nuclei,
i contrast to solid particles without phase transfor-
1ations, the main interaction forces are the Bjerkness
irees §7]

299
87p =5 52
Fn=r_zR|Rz<R1Rz>
4 EJRS 2
=i9—‘r22—“’ke(f, P2 (57)

where ", and X, are compressibilities of two dif-
ferent nuclei. For nuclei of the same radius, the
Bjerkness forces are

Fy = $rpw?R8| X | PL/r2. (58)

It follows from the formulae and results given in
Figs. 2 and 3 that the Bjerkness forces for nuclei
increase sharply as compared with the case of solid
particles without phase transformations.

Acknowledgements—The authors are grateful to V. N. Alek-
seevand V. P. Yushin from the Acoustic Institute of the USSR
Academy of Sciences for helpful discussions of the results
obtained.

REFERENCES

1. A. P. Kapustin, Ulirasound Effect on Crystallization
Kinetics. Izd. Akad. Nauk SSSR, Moscow (1962).

2. G. L. Eskin, Ultrasound Treatment of Melted Aluminum.
Izd. Metallurgiya, Moscow (1965).

3. O. V. Abramov and I. I. Teumin, Crystallization of
metals, in Physics and Technique of Powerful Ultrasound,
Vol. 3, pp. 429-514. 1zd. Nauka, Moscow (1970).

4. O. V. Abramov, Crystallization of Metals in an Ultra-
sound Field. 1zd. Metallurgiya, Moscow (1972).

5. 0.V.Abramov, Yu. S. Astashkin and V. S. Stepanov, On
acoustic flows in melts, Akust. Zh. 25(2), 180-186 (1979).

6. I. S. Koltsova, I. G. Mikhailov and E. K. Kayak,
Absorption and scattering of ultrasound in the process of
crystallization, Vestnik LGU 22(4), 55-62 (1969).

7. V. A. Akulichev, Caritation in Cryogenic and Boiling
Liquids. 1zd. Nauka, Moscow (1978).

8. O. A. Kapustina, Degassing of liquids, in Physics and
Technique of Powerful Ultrasound, Vol. 3, pp. 253-336.
Izd. Nauka, Moscow (1970).

9. V. A.Bulanov, Phase conversions in a supercooled liquid
in an ultrasound field, in Proc. of the 9th All-Union
Acoustic Conf., pp. 69-72. Izd. Akust. Inst., Moscow
(1977).

10. L. Meinhold-Heerlein, Surface conditions for the
liquid-vapour system, Phys. Rer. 8A, 2575-2585 (1973).

11. L.D. Landau and E. M. Lifshitz, Mechanics of Continua.
Gostekhizdat, Moscow (1954).

12. R. L. Parker, Crystal growth mechanisms: energetics,
kinetics and transport, in Ser. Selid State Physics, Vol. 25,
Academic Press, New York (1970).

13. V.T.Borisov, A. 1. Dukhin and Yu. E. Matveev, Towards
the growth mechanism of metallic crystals, in Crystalli-
zation and Phase Conversions, pp. 279-284. 1zd. Akad.
Nauk BSSR, Minsk (1962).

14. V.A.Bulanov, Crystallization of a supercooled liquidin a
sound field. Stationary dynamics of crystallization nuclei
in a liquid, Akust. Zh. 25(3), 358-366 (1979).

15. D. Y. Hsieh and M. S. Plesset, Theory of rectified
diffusion of mass into gas bubbles, J. Acoust. Soc. Am. 33,
206-215 (1961).

16. L. D. Landau and E. M. Lifshitz, Statistical Physics. 1zd.
Nauka, Moscow (1976).

17. Ya. 1. Frenkel, Kinetic Theory of Liquids. 1zd. Nauka,
Leningrad {(1975).



300
18.
19.

20.

V. A. Akuuictey and V. A, BuLaNov

L. L. Foldy, The multiple scattering of waves, Phys. Rer.
67, 107-119 (1945). :

P. C. Waterman and R. Truell, Muitiple scattering of
waves, J. Math. Phys. 2, 512-537 (1961).

M. A.Isakovich, On sound propagation in emulsions, Zh.
Eksp. Teor. Fiz. 18, 907-912 (1948).

. S. M. Rytov, V. V. Vladimirsky and M. D. Galanin,

Sound propagation in dispersed systems, Zh. Eksp. Teor.
Fiz. 8, 614-621 (1938).

. M. A. Isakovich and L. I. Mandelshtam, Sound pro-

pagation in micro-inhomogeneous media, Uspekhi Fiz.
Nauk 129, 531-540 (1979).

. L. M. Brekhovskikh and Yu. P. Lysanov, Acoustics of the

ocean, in Physics of the Ocean Vol. 1.2, pp. 49-145. Izd.
Nauka, Moscow (1978).

24,
25.

26.

27.

28.

L. K. Zarembo, Acoustic flows, in Powerful Ultrasound
Fields, pp. 87-128. I1zd. Nauka, Moscow (1968).

K. Yosioka and Y. Kawasima, Acoustic radiation pre-
ssure on compressible sphere, Acustica5,167-173 (1955).
L. P. Gorkov, Concerning the forces acting on a small
particle in an acoustic field in an ideal liquid, Dokl. Akad.
Nauk SSSR 140, 88-91 (1961).

A. Eller, Force on a bubble in a standing acoustic wave, J.
Acoust. Soc. Am. 43, 170-171 (1968).

N. A. Fuks, Mechanics of Aerosols. 1zd. Akad. Nauk
SSSR, Moscow (1955).

NOYAUX DE CRISTALLISATION DANS UN LIQUIDE SOUMIS A UN CHAMP SONORE

Résumé —On étudie théoriquement les noyaux de cristallisation soumis a des oscillations radialement
symétriques dans des liquides sous-refroidis et des solutions sursaturées avec un champ sonore. Une
cristallisation et une fusion périodiques se produisent pour les plus grandes amplitudes. Il en résulte une
interaction non-linéaire du son avec le noyau oscillant et un transfert thermique modifié, par exemple un lent
(par rapport au cycle sonore) pompage de chaleur dans le noyau. Un autre aspect de cette interaction non-
linéaire est dans le fait que la place des sites de nucléation dans une onde sonore dépend des dimensions des
noyaux et de la fréquence du son — situation qui différe fortement du cas des particules solides sans
transformation de phase. On montre que ces transformations de phase peuvent accroitre I'absorption et la
dispersion du son dans les liquides par rapport aux liquides contenant des particules solides sans
transformation de phase. On montre aussi que I"accroissement d'amplitude des oscillations des noyaux de
cristallisation augments les interactions avec les autres.

KRISTALLISATIONSKERNBILDUNG IN FLUSSIGKEITEN IN EINEM SCHALLFELD

Zusammenfassung—Der Bericht handelt von der theoretischen Untersuchung der Kristallisationskernbil-
dung unter radialsymmetrischen Schwingungen in unterkiilten und ubersittigten Ldsungen, die einem
Schallfeld ausgesetzt sind. Im Verlauf der Schwingung treten periodisisch Kristallisations- und Schmelzpro-
zesse auf, was sich in hoheren Amplituden ausdriickt.

Dies steigert die nichtlineare Wechselwirkung des Schalls mit einem schwingenden Kern, was einen
gerichteten Wirmetransport bewirkt. Dabei wird Warme vergleichsweise langsamin den Kern gepumpt. Ein
weiteres besonderes Merkmal der nichtlinearen Wechselwirkung zwischen dem Schall und dem Kern ist von
besonderer Bedeutung ; dic I.age des Kerns in einer stehenden Welle hingt von der Gré6e des Kerns und der
Schall-Frequenz ab ein grundlegender Unterschied zu Feststoffen ohne Phasentransformation. Es wird
gezeigt, daB die Phasenverschiebung in kristallisierenden Flissigkeiten merklich die Absorption und die
Streuung der Schallausbreitung vergréBert, verglichen mit Flussigkeiten, die Feststoffpartikel enthalten und
keine Phasenverschiebung haben. Es wird auch gezeigt, daB eine Erhdhung der Schwingungsamplitude des

kristallisicrenden Kerns die Wechselwirkung der Kerne untereinander verstirkt.

3APOJIbIIIH KPHCTAJUTH3AUMH B XXUJIKOCTH B 3BYKOBOM TOJIE

AnnoTaiHs—TeopeTHYECKH HCCIEA0BaHbl PAAHANBHO-CHMMETPHYHBIC KO:1e0AHHA 3apOMBIWIET KPHC-
TANM3ALUMK, TPOMCXOAALHE B 3BYKOBOM [OJI€ B MEPCOXTAKACHHUBIX KHMIKOCTAX M [€PCCHILLEHIBIX
pacTeopax. [Moku3ano, 4TO CyWIeCTBOBAaLHE NEPHOAMIECKHX NPOLECCOB KPHCTANNH3ALKY H NNaBIeHUA
npH K01e6aHNAX 3apObILEH NPHBOAKT K YBEMHMCHHIO AMIIMTYAbI 3TuX x0acbannit. 310 ofcrosTen-
CTBO CrocoBCTBYET YCHIEHNIO HEAHHeHHOro BIaHMOACHCTBHA 3BYKQ C MYJIbCHPYIOLWHM 3aPOABILEM.
OHO IPHBOINT K SBACHIIO BHIMPAMICHHON Tenuionepeaayn npu ko1ebaniusx 3apopiiueii ~ Me/LIcHIOMY
N0 CPABHEHHIO C [ICPHONOM - 3BYKA MNPOLECCY HAKAYHBAMMA TENZa BHYTPL 3apoisuua. Jlpyras
0coBEHHOCTb HEIHHEITHOTO B3aHMOACHCTBHA 3BYKAa C 3apOABbILAMM BLIPAKAETCE B 3ABHCHMOCTH
MECTA /10KAMH3ALMK 3apOAbILCt B CTORYCH 3BYKOBOIH BONHE OT HX Pa3MepoB W 4YACTOTLI 3BYK4,
4TO CyMIecTBenHbIM OOPa3oM OTIMYACTCH OT Cyyas TBepanix uacTiu 6e3 (a3osmx HpeBpacHiti.
[Moka3aHo, 4TO M3-3a HAMYHA (A3OBLIX NPEBPALUECHHI MOrIOWEHNE H AHCICPCHA CKOPOCTH 3BYKA,
PACNPOCTPAHSIOIErocs B KPHCTULTHIYIOWMXCA AKHAKOCTAX, COJEPAALHX TBEPALIC HacTuupl Ge3
¢datospix npepawennii. Tloxazano Takke, YTO YBCAHYEHHE AMIUIHTYAbL koaebanuii 3aponsiueit
KPHCTAI32UHH NPHBOAKT K MOBLILEHHIO CHT BIAHMOAEHCTBHA HX JIPYr ¢ APYTOM.



